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The Spectral Gap for the Kawasaki Dynamics at Low
Temperature
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In this paper we analyze the convergence to equilibrium of Kawasaki dynamics
for the Ising model in the phase coexistence region. First we show, in strict anal-
ogy with the nonconservative case, that in any lattice dimension, for any bound-
ary condition and any positive temperature and particle density, the spectral
gap in a box of side L does not shrink faster than a negative exponential of the
surface Ld&1. Then we prove that, in two dimensions and for free boundary
condition, the spectral gap in a box of side L is smaller than a negative
exponential of L provided that the temperature is below the critical one and the
particle density \ satisfies \ # (\*& , \*+), where \*\ represents the particle density
of the plus and minus phase, respectively.

KEY WORDS: Kawasaki dynamics; spectral gap; large deviations; Wulff
construction.

1. INTRODUCTION

In this paper we analyze in some detail the dependence on the volume of
the spectral gap of the generator of the usual Kawasaki dynamics (i.e.,
a nearest neighbors spin-exchange Markov process on the spin configura-
tion space, reversible w.r.t. to the canonical Gibbs measure) for the standard
nearest neighbor ferromagnetic Ising model in the phase coexistence region.

As it is well known, the conservation of the particle number (in the
lattice gas picture, or of the magnetization in the usual \1 spin variables)
makes the analysis of the relaxational properties of conservative dynamics
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much more difficult then in the non-conservative case of Glauber dynamics,
even for very high temperature. For Glauber dynamics the general picture
is relatively clear for a wide class of models both in the one phase and in
the phase coexistence region with the notable exception of the critical point
(see, e.g., [M1] and references therein). In particular, for the two dimen-
sional Ising case with zero external field, the spectral gap of a Glauber
dynamics does not go to zero in the thermodynamic limit for any tem-
perature above the critical one, while below the critical temperature the
spectral gap in a box of side L and free boundary conditions becomes
exponentially small in L with a precise rate related to the surface tension.

In the conservative case, instead, the basic results [LY, Y] on the
spectral gap and logarithmic Sobolev inequality of Kawasaki dynamics are
restricted to the one phase region and state that, under a suitable mixing
condition on the grandcanonical Gibbs measure which for the two dimen-
sional Ising model holds for any temperature above the critical one, the
spectral gap in a box of side L shrinks like L&2. The proof of such interesting
and far-reaching result required the development of a rather sophisticated
and intricate technology and posed new, non trivial problems on the
theory of canonical Gibbs measure and their equivalence to grandcanonical
ones.

It seems therefore natural to ask whether, at least for a simple case like
the two dimensional Ising model, one could obtain upper and lower
bounds on the spectral gap of Kawasaki dynamics also in the phase
coexistence region. Here we provide a first partial answer to the above
question by proving the following two results.

First we show, in strict analogy with the non-conservative case (see
Theorem 4.12 in [CMM]), that in any dimension, for any boundary condi-
tion, any positive temperature and particle density, the spectral gap in a box
of side L does not shrinks faster than exp(&:1Ld&1). Then we prove that,
in two dimensions and free b.c., the spectral gap in a box of side L is smaller
than exp(&:2 L) provided that the temperature is below the critical one
and the particle density \ is satisfies \ # (\*& , \*+), where \*\=(1\m*)�2
and m* is the usual spontaneous magnetization at inverse temperature ;.
It is important to point out that in this case, contrary to the non conser-
vative case, by no means our proof provides a good bound on the rate :2

appearing in the exponential. Actually we do not even have a good guess
for such a quantity and we think it would be quite nice to be able to com-
pute it. Let us now explain in simple terms the strategy behind the proof
of these results. In order to prove the first lower bound, namely
gap(QL)�Ce&kLd&1

, we proceed recursively and prove that

gap(Q2L)�e&kLd&1
gap(QL) (1.1)
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Such an inequality is rather straightforward in the Glauber case. In this
case, in fact, the grandcanonical measure in Q2L has a density w.r.t. the
product of two grandcanonical measures in each half of Q2L which is
bounded from above and from below by an exponential of the interaction
through the interface separating the two halves. In other words, by paying
a price not larger than ekLd&1

, one can compare the spectral gap of the
Glauber dynamics in Q2L with that of a product Glauber dynamics in each
half of Q2L and easily get (1.1). For a conservative dynamics like Kawasaki
dynamics such a reasoning does not apply because the conservation of the
number of particles introduces a global constraint in the system and even
at infinite temperature the dynamics does not factorize into independent
components. If however we fix in addition the number of particles in each
halves of Q2L , i.e., we consider a multicanonical Gibbs measure, then we
can proceed exactly as in the non conservative case and succesfully com-
pare the dynamics in Q2L with a product dynamics in each of the two
halves. Technically this is done via the formula of the conditional variance

Var( f )=E(Var( f | n))+Var(E( f | n)) (1.2)

where Var( } ) and E( } ) denote respectively the variance and expectation
w.r.t. the canonical Gibbs measure on Q2L , and n denotes the number of
particles in, e.g., the upper half of Q2L . In order to control the effects
produced by the above extra conservation law, i.e., to be able to bound the
last term in the r.h.s. of (1.2), one is led naturally to study the distribution
of the number of particles in half cube under the canonical Gibbs distri-
bution in Q2L and in particular to prove a Poincare� inequality for it.
This turned out to be an interesting problem which is fully discussed in
Section 4.

It is worthwhile to mention that the above simple strategy to prove a
lower bound on the spectral gap gives the correct L&2 scaling at infinite
temperature (simple exclusion model) even at the level of the logarithmic
Sobolev constant and it looks quite promising also to treat the high tem-
perature regime [M2].

Let us now turn to our second result. Here the goal is to prove an upper
bound on the spectral gap which is exponentially small in L and thus it is
natural to follow the ``look for a bottleneck'' approach, i.e., to look for a
suitable trial function with a very small Dirichlet form and a comparatively
large variance to plug into the variational characterization of the gap
(2.14). Let us denote by N the total number of particles in a square QL of
side L and let us assume that \ # (\*& , \*+) where \=N�L2 and \*\ have
been defined above. Then our choice is to take as test function the charac-
teristic function of the event that the number of particles in the set U
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described in Fig. 1 (Section 5) is less than N�2. In order to explain such
apparently weird choice, it is useful first to recall the shape of the typical
configurations of the canonical Ising Gibbs measure in a square QL with
N particles and free b.c. when the temperature is below the critical value.

Let m\=2\&1 be the usual magnetization associated to the given
particle density. Then, as discussed in [Sh] (see also [CGMS] and Section 5
below), there exists 0<m1<m* such that

(i) if m\ # (&m1 , m1) then the typical configurations show phase
segregation between a high�low density (r\*\) regions that are roughly
two horizontal (vertical) rectangles of appropriate area separated by an
horizontal (vertical) interface of length L.

(ii) if m\ # (&m*, m*)"(&m1 , m1) then the typical configurations
show phase segregation between a high�low density (r\*\), regions one of
which is a quarter of a Wulff shape (see [DKS]) of appropriate area and
centered in one of the four vertices of QL .

What is important for us is that in both cases the typical configurations of
the canonical measure show a discrete symmetry described by rotations of
k(?�2), k=0, 1 ... around the center of QL and that the critical value m1 is
such that for each typical configuration the particle density in the set U,
\U , is either below or above \. In particular, if the dynamics starts from
one typical configuration, for which, e.g., \U<\, then, in order to relax to
equilibrium, it must necessarily cross the unlikely region in the configura-
tion space in which \U=\. Thus in order to conclude the argument it is
sufficient to show that the canonical probability of seeing \U=\ is
exponentially small in L. Such bound is proved in Sections 5, 6, and 7 for
any temperature below the critical one and any \ # (\*& , \*+). Its proof,
which is unfortunately rather technical, requires in particular a rather
sharp lower bound on the Ising grandcanonical probability of having
exactly N particles in QL (see Section 7). We have been able to obtain such
a bound by adapting and partially extending to free boundary condition
the recent techniques introduced in [IS] where plus b.c. are treated.

We conclude by observing that the above discrete symmetry of the
typical configurations is peculiar of free b.c. If instead one works with, e.g.,
plus b.c., then the typical configurations for the canonical measure when
m\ is slightly below m* consist of a low density Wulff bubble centered
somewhere in the bulk of QL , immersed in a sea of high density. In this
case we suspect that the continuous degeneracy of the typical configura-
tions caused by the arbitrariness of the location of the center of the Wulff
bubble prevents the spectral gap to be exponentially small in L. In par-
ticular one may argue that the slowest mode of the system is due to the
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random walk motion of the center of gravity of the unique Wulff bubble.
If that is true then simple heuristics shows that the spectral gap should
shrink as L&3. Although at the moment we cannot prove a lower bound
of this type, it is not too difficult to show that gap�constL&3. This
inequality is obtained by plugging into the variational characterization of
the spectral gap (2.14) a slowly (on scale L) varying function of the center
of gravity of the Wulff bubble. Such a choice of the test function is dictated
by the above heuristics.

2. NOTATION AND RESULTS

The Lattice. We consider the d dimensional lattice Zd with sites
x=(x1 ,..., xd ) and norms

|x|p=\ :
d

i=1

|xi |
p+

1�p

p�1 and |x|=|x|�= max
i # [1,..., d ]

|xi |

The associated distance functions are denoted by dp( } , } ) and d( } , } ). By QL

we denote the cube of all x=(x1 ,..., xd ) # Zd such that x i # [0,..., L&1]. If
x # Zd , QL(x) stands for QL+x. We also let BL be the ball (w.r.t d( } , } )) of
radius L centered at the origin, i.e., BL=Q2L+1((&L,..., &L)). If 4 is
a finite subset of Zd we write 4//Zd . The cardinality of 4 is denoted
by |4|. F is the set of all nonempty finite subsets of Zd .

[x, y] is the closed segment with endpoints x and y. The edges of Zd

are those e=[x, y] with x, y nearest neighbors in Zd. The boundary of an
edge e=[x, y] is $e=[x, y]. The boundary of a set of edges : is the set
$: of all sites that belong to an odd number of edges of :. A set of edges
is called closed if its boundary is empty. We denote by E4 the set of all
edges such that both endpoints are in 4 and by E� 4 the set of all edges with
at least one endpoint in 4. Viceversa, for a set of edges X, V(X ) stands for
the set of all sites which are endpoints of at least one edge in X. When d=2
we consider also the dual lattice Z2

*
=Z2+(1�2, 1�2). Given an edge e of

Z2(Z2

*
), e* is the unique edge in Z2

*
(Z2) that intersects e. Given 4/Z2 we

let 4* as the set of all x # Z2

*
, such that d2(x, *)=1�- 2. The set of the dual

edges is defined as

E� 4=[e*: e # E� 4]

Notice that, in general, E� 4/E4* (the equality holds, for instance, in the
case of rectangles).

Given 4/Zd we define its interior and exterior boundaries as respec-
tively, �4=[x # 4 : d(x, 4c)�1] and �+4=[x # 4c : d(x, 4)�1], and
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more generally we define the boundaries of width n as �n4=[x # 4 :
d(x, 4c)�n], �+

n 4=[x # 4c : d(x, 4)�n]. For 4/Zd we also let

$4=[e*: e=[x, y], x # 4, y # 4c, |x& y| 1=1] (2.1)

The Configuration Space. Our configuration space is 0=SZ d
,

where S=[&1, 1], or 0V=SV for some V/Zd. Sometimes the lattice gas
point of view will be more convenient, so we also consider the space
0$=[0, 1]Zd

and its natural one-to-one correspondence with 0. The single
spin space S is endowed with the discrete topology and 0 with the corre-
sponding product topology. Given _ # 0 and 4 # Zd we denote by _4 the
natural projection over 04 . If U, V are disjoint, _U{V is the configuration
on U _ V which is equal to _ on U and { on V. Given V # F we define
the unnormalized magnetization MV : 0 [ Z and the number of particles
NV : 0$ [ N as

MV (_)= :
x # V

_(x), NV (')= :
x # V

'(x) (2.2)

while the normalized magnetization is given by mV=MV�|V |.
If f is a function on 0, 4f denotes the smallest subset of Zd such

that f (_) depends only on _4f } f is called local if 4f is finite. F4 stands for
the _-algebra generated by the set of projections [?x], x # 4, from 0 to
[&1, 1], where ?x : _ [ _(x). When 4=Zd we set F=FZ d and F coin-
cides with the Borel _-algebra on 0 with respect to the topology intro-
duced above. By & f &� we mean the supremum norm of f. The gradient of
a function f is defined as

({x f )(_)= f (_x)& f (_)

where _x # 0 is the configuration obtained from _, by flipping the spin at
the site x.

The Interaction and the Gibbs Measures. Given V # F we
define the Hamiltonian HV : 0 [ R by

&HV (_)= :
[x, y] # E� V

_(x) _( y) (2.3)

For _, { # 0 we also let H {
V (_)=HV (_V{V c) and { is called the boundary

condition. Sometimes we take { # 0� =[0, &1, +1]Z d
and we call it a

generalized boundary condition. As a particular case we have the free
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boundary conditions, given by {=0. The corresponding Hamiltonian is
denoted by

&H <
V (_)= :

[x, y] # EV

_(x) _( y) (2.4)

For each V # F, { # 0 the (finite volume) Gibbs measure on (0, F), is
given by

+;, {
V (_)={(Z;, {

V )&1 exp[&;H {
V (_)]

0
if _(x)={(x) for all x # V c

otherwise
(2.5)

where Z;, {
V is the proper normalization factor called partition function. We

will often omit the superscript ; in all quantities, since in all our results the
value of ; can be considered a fixed parameter. Given a measurable bounded
function f on 0, +V f denotes the function _ [ +_

V ( f ). Analogously, if
X # F, +V (X )=+V1X , where 1X is the characteristic function on X. +( f, g)
stands for the covariance (with respect to +) of f and g. The set of measures
(2.5) satisfies the DLR compatibility conditions

+4(+V (X ))=+4(X ) \X # F \V/4//Zd (2.6)

A probability measure + on (0, F) is called a Gibbs measure if

+(+V (X ))=+(X ) \X # F \V # F (2.7)

It is well known that, for the interaction (2.3), the sequences +;, +
QL

and
+;, &

QL
converge weakly, as L � �, to the Gibbs measures + ;, + and + ;, &

respectively. We call spontaneous magnetization the function m*: R+ [
[0, 1], given by

m*(;)=+ ;, +(_(0))= lim
L � �

+;, +
QL

(_(0)) (2.8)

The critical inverse temperature ;c is defined as, the supremum of all ; 's
such that m*(;)=0. When d=2 it is well known that ;c=(1�2)_
log(1+- 2). We introduce the canonical Gibbs measures on (0, F) defined
as

&{
4, N=&{

4( } | N4=N ) N # [0, 1,..., |4|] (2.9)

where N4 is the number of particles (i.e., spins equal to +1) in 4.
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The Dynamics. We consider the so-called Kawasaki dynamics in
which particles (spins with _(x)=+1) can jump to nearest neighbor empty
(_(x)=&1) locations, keeping the total number of particles constant.
For _ # 0, let _xy be the configuration obtained from _ by exchanging the
spins _(x) and _( y). Let txy_=_xy and define (Txy f )(_)= f (txy _). The
stochastic dynamics we want to study is determined by the Markov gener-
ators LV , V//Zd, defined by

(LV f )(_)= :
[x, y] # EV

cxy(_)({xy f )(_) _ # 0, f : 0 [ R (2.10)

where {xy=Txy&1. The nonnegative real quantities cxy(_) are the transi-
tion rates for the process.

The general assumptions on the transition rates are

(1) Nearest neighbor interactions. cxy(_) depends only on the spins
that are nearest neighbors of either x or y

(2) Detailed balance. For all _ # 0 and [x, y] # EZd

exp[&;H[x, y](_)] cxy(_)=exp[&;H[x, y](_xy)] cxy(_xy) (2.11)

(3) Positivity and boundedness. For all ;>0 there exist positive real
numbers cm(;) cM(;) such that

cm�cxy(_)�cM \x, y # Zd, _ # 0 (2.12)

We denote by L{
V, N the operator LV acting on L2(0, &{

V, N ) (this amounts
to choosing { as the boundary condition and N as the number of particles).
Assumptions (1), (2) and (3) guarantee that there exists a unique Markov
process whose generator is L{

V, N , and whose semigroup we denote by
(T V, N, {

t )t�0 . L{
V, N is a bounded operator on L2(0, &{

V, N ) and &{
V, N is its

unique invariant measure. Moreover &{
V, N is reversible with respect to the

process, i.e., L{
V, N is self-adjoint on L2(0, &{

V, N ). A fundamental quantity
associated with the dynamics of a reversible system is the gap of the gener-
ator, i.e.,

gap(L{
V, N )=inf spec(&L{

V, N � 1=)

where 1= is the subspace of L2(0, &{
V, N ) orthogonal to the constant func-

tions. We let E be the Dirichlet form associated with the generator L{
V, N ,

E{
V, N( f, f )=( f, &L{

V, N) L2(0, & {
V, N )=

1
2 :

[x, y] # EV

&{
V, N[cxy({xy f )2] (2.13)
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and Var{
V, N is the variance relative to the probability measure &{

V, N . The
gap can also be characterized as

gap(L{
V, N )= inf

f # L2(0, & {
V, N ), Var {

V, N ( f ){0

E{
V, N( f, f )

Var{
V, N( f )

(2.14)

Our main results are the following upper and lower bounds on the spectral
gap of the generator in a finite volume.

Theorem 2.1. (a) For all integers d�2 there exists :1(;)>0
such that, for all ;>0, for all { # 0, for all large enough L and for all
N # [0,..., |QL |], we have

gap(L{
QL , N )�e&:1L d&1

(2.15)

(b) Let d=2, ;>;c , and m # (&m*(;), m*(;)). Then there exists
:2(;, m)>0 such that, if Nm

L =w(1+m) |QL |�2x (i.e., Nm
L is the number

of particles which gives a magnetization approximately equal to m), then,
for large enough L

gap(L<
QL , NL

m)�e&:2L (2.16)

Remarks. While the lower bound is a quite general statement, the
upper bound (2.16) is special to free boundary conditions, ;>;c and
|m|<m*. In [LY] it has been shown that if one has a ``complete
analyticity'' type of condition at a certain inverse temperature ; and for all
magnetic fields h, then gap(L;, <

QL , NL
m)tL&2 follows. In the case of the

2-dimensional Ising model, this condition is known to be true when ;<;c .
One might expect a polynomial law if ;>;c and |m|>m* (this is certainly
true if, e.g., there is only one particle!).

The Glauber Dynamics. Even though our results deal with the
gap associated to the Kawasaki dynamics, we sometimes need to use
results for the Glauber dynamics, defined in terms of transition rates cx(_)
which is the rate of the transition _ � _x, where _x is the configuration
obtained from _ by flipping the spin at x. The generators of these processes
are denoted by LV , defined as

(LV f )(_)= :
x # V

cx(_)({x f )(_) _ # 0 (2.17)
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3. PRELIMINARY RESULTS

We collect in this section some preliminary results that will be used in
the future. The reader can skip them during a first reading and come back
to this section when these results are needed.

Proposition 3.1. Let 4//Zd. Then, for all ;>0, { # 0 and for
all k # [0,..., |4|&1] we have

|4|&k
k+1

e&4d;�
+{

4[N4=k+1]
+{

4[N4=k]
�

|4|&k
k+1

e+4d;

Proof. Define '(x)=(1+_(x))�2, N4(_)=�x # 4(1+_(x))�2, then

+{
4[N4=k+1]=

�_: N4 (_)=k+1 e&; H{
4 (_) �x # 4 '(x)

(k+1) Z{
4

=
1

k+1
:

x # 4

+{
4(e&;({x H{

4 )(_)(1&'(x)) 1[N4=k])

�
|4|&k
k+1

e4d;+{
4[N4=k]

where we used the change of variable _ [ _x to obtain the second equality
and &e&; {xH {

4&��e4d; for the last inequality. The lower bound is analo-
gous. K

Proposition 3.2. Let \ be a probability measure on 0=[0, 1,..., N ],
and assume that

\(i)=\(N&i) (3.1)

Then, for all functions f on 0 we have

Var( f )�C\ :
N

i=1

(\(i) 7\(i&1))[ f (i)& f (i&1)]2

where

C\=4(N+1)2 _ sup
i�N�2, j�i

\( j)
\(i) &

2
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Proof. We consider a continuous time Markov chain with transition
rates

c(i, j)={\( j)�\(i) 7 1
0

if j=i\1
otherwise

(3.2)

Since the rates satisfy the detailed balance condition

\(i) c(i, j)=\( j) c( j, i) (3.3)

the probability measure \ is reversible with respect to the chain. The
associated Dirichlet form is given by

E\( f, f )= :
N

i=1

\(i) c(i, i&1)[ f (i&1)& f (i)]2

= :
N

i=1

(\(i) 7 \(i&1))[ f (i)& f (i&1)]2

If we denote by * the spectral gap of the generator of the chain, we have

Var\( f )�
1
*

E\( f, f )=
1
*

:
N

i=1

(\(i) 7 \(i&1))[ f (i)& f (i&1)]2

To conclude the proof we need a lower bound for *. Cheeger's inequality
(see Theorem 2.1 in [LS]) states that

*�
I 2

8M

where M=supi (c(i, i+1)+c(i, i&1)) and

I= min
A/0

� ( j, k) # A_Ac c( j, k) \( j)
\(A)(1&\(A))

With the choice (3.2) M�2. As the state space 0 is countable and connected,
by Corollary 4.4 in [LS], the minimum can be taken over all subsets
A/0 such that A and Ac are connected. Using the symmetry between A
and Ac we can also impose \(A)�1�2. We can thus write, using (3.1), (3.3)
and (3.2),

1
I

� sup
i�[(N&1)�2]

� j�i \( j)
\(i) 7 \(i+1)

�_N+1
2 & sup

i�[(N+1)�2], j�i

\( j)
\(i)

(3.4)
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As, by Eq. (3.1), \((N+1)�2)=\((N&1)�2), in (3.4) we can take i�N�2.
We thus obtain

1
*

�C\=4(N+1)2 _ sup
i�N�2, j�i

\( j)
\(i)&

2

K

In the following proposition we need to introduce a magnetic field, so we
also define

H h
V(_)=HV (_)&h :

x # V

_(x) (3.5)

The corresponding Gibbs measure is denoted by +h, {
4 .

Proposition 3.3. Let 4//Zd, n # [1,..., |4|&1], and let ;, h be
such that +h, {

4 (N4)=n. Consider a Glauber-type dynamics with transition
rates cx(_), generator Lh, {

4 , and let c g
M=supx, _ cx(_). Then

+h, {
4 [N4=n]�\gap(Lh, {)

|4|c g
m

7 1+ 1
(n+2)( |4|&n+1)

Proof. Consider trial function

f4, n(_)=1[N4 (_)>n]

where, as usual, N4 is the number of particles in 4. The Dirichlet form
associated to the Glauber dynamics is bounded by

E4, h( f, f )�|4|c g
M +h, {

4 [N4=n]

while the variance is given by

Var4, h( f )=+h, {
4 [N4�n] +h, {

4 [N4>n]

so that, by the analogous of (2.14) for the Glauber dynamics we have

+h, {
4 [N4=n]�\gap(Lh, {

4 )
|4|c g

M + [+h, {
4 [N4�n] +h, {

4 [N4>n]] (3.6)

We now bound the two probabilities in the RHS of (3.6). For the first one
we have

n=+h, {
4 (N4)�(n+1) +h, {

4 [N4>n]=(n+1)(1&+h, {
4 [N4�n])
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thus

+h, {
4 [N4�n]�

1
n+1

Analogously we obtain

+h, {
4 [N4<n]�

|4|&n
|4|&(n&1)

so that for the second one

+h, {
4 [N4>n]�

1
|4|&(n&1)

&+h, {
4 [N4=n]

and the result follows. K

For x, z # Zd, we define the events

Exz=[_ # 0 : _(x)=1, _(z)=0] (3.7)

Proposition 3.4. Let 4//Zd, 4=V _ W with V & W=<. Let
&=&;, {

4, N and \i=&[NV=i ]. Let also ci=i( |W |&N+i) and c$i=
i( |V |&N+i). Then, for all functions f on 0 we have

&( f | NV=i)&&( f | NV=i&1)

=&
1
ci

:
x # V
z # W

&[({xz f ) 1Exz
| NV=i ]

+
1
ci

\i&1

\i
:

x # V
z # W

&[e&;{xzH4 1Exz
, f | NV=i&1]

=
1

c$N&i+1

:
x # V
z # W

&[({xz f ) 1Ezx
| NV=i&1]

&
1

c$N&i+1

\i

\i&1

:
x # V
z # W

&[e&; {xzH4 1Exz
, f | NV=i ]

Remark. A similar statement is contained in Lemma 3.1 in [LY].
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Proof. For _ # 0, let ?$x(_)=(_(x)+1)�2. Adding and subtracting
Txz f we can write

&( f | NV=i)=
1
ci

:
x # V
z # W

&[( f&Txz f ) ?$x(1&?$z) | NV=i ]

+
1
ci

:
x # V
z # W

&[(Txz f ) ?$x(1&?$z) | NV=i ] (3.8)

After the change of variable ' [ 'xz, using the equality &( fg)=&( f, g)+
&( f ) &(g), we can write the second term in (3.8) as

1
ci

&[NV=i&1]
&[NV=i ]

:
x # V
z # W

&[e&; {xzH4 (1&?$x) ?$z , f | NV=i&1]

+
1
ci

&[NV=i&1]
&[NV=i ]

:
x # V
z # W

&[e&; {xz H4 (1&?$x) ?$z | NV=i&1]

_&( f | NV=i&1) (3.9)

Taking f =1 in equation (3.8) we obtain that the term multiplying
&( f | NV=i&1) in (3.9) is equal to one and the result is obtained.

The second equality follows from the first by interchanging V and W. K

4. PROOF OF THE LOWER BOUND

Here we prove the lower bound (2.15) of the main Theorem 2.1. In the
first subsection we show how, at least when the boundary condition if free
and the side L of the cube QL is a power of two, the lower bound is a con-
sequence of a key inequality stated in Lemma 4.1. The second subsection
is where our hands get dirty and we prove of Lemma 4.1. Next we show
how to extend the results to an arbitrary boundary condition and all values
of L (this is very simple). Finally we show how, with our approach, we
recover the well known result for ;=0.

4.1. Reduction to the Key Inequality (4.5)

The core of the proof is to show that gap(24)�gap(4) exp(&kLd&1).
To be more precise, for even L, consider the parallelepipeds Q j

L for
j=0, 1,..., d, defined as the set of all x # QL such that 0�x i�L�2&1 for
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i= j+1,..., d. Thus Qd
L coincides with QL , while Q0

L=QL�2 . Moreover
Q j+1

L is the disjoint union of Q j
L and a translate of Q j

L . Let now

a(4)= sup
N # [0,..., |4|]

gap(L<
4, N)&1

What we want to show is that for some k which depends only on ; we have

a(Q j+1
L )�a(Q j

L) ekL d&1
\j=0,..., d&1 (4.1)

One can then iterate this inequality and obtain the result of Theorem 2.1
for L=2n, and free boundary condition. In subsection 3 we remove these
limitations.

In the following we will often consider a volume 4 which is a disjoint
union of two subsets

4=V _ W V & W=< (4.2)

and we consider a modified Ising model where all interactions between V
and W have been turned off, i.e., we define an interaction

Jxy={0
1

if x # V and y # W (or viceversa)
otherwise

(4.3)

Then we define the following ``dotted'' quantities for the ``decoupled''
system

&* =&J, <
4, N , L4 =LJ, <

4, N , E4 ( f, f )=&* (& f L4 f ) (4.4)

The main ingredient for proving (4.1) is the following

Lemma 4.1. With reference to the notation introduced in (4.2),
(4.3), (4.4), if W is a translate of V and d1(V, W )=1 (there is at least one
edge connecting the two sets), then there exists k(;)>0 such that

Var&* (&* ( f | NV ))�exp(k |4| (d&1)�d )[E4 ( f, f )+&* (Var&* ( f | NV ))] (4.5)

We prove this result in the next subsection, while below we show that
Lemma 4.1 implies (4.1). Let V=Q j

L , 4=Q j+1
L and let W be the unique

translate of V such that V & W=< and V _ W=4. Thus 4, V and W
satisfy the hypotheses of Lemma 4.1. Let &* =&J, <

4, N . Then for all functions
f : 04 [ R we have

Var&* ( f )=&* (Var&* ( f | NV ))+Var&* (&* ( f | NV )) (4.6)
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The key fact now is that, since there is no interaction between V and W,
the conditional measure &* ( } | NV=k) is a product measure, i.e.,

&* ( } | NV=k)=&<
V, k_&<

W, N&k

Moreover &* ( } | NV=k) is the reversible measure of a Markov process whose
generator is the sum of the two commuting generators L<

V, k+L<
W, N&k . By

consequence we have that

Var&* ( f | NV=k)�max[gap(L<
V, k)&1, gap(L<

W, N&k)&1]

_[&* (&fL<
V, k f | NV=k)+&* (& fL<

W, N&k f | NV=k)]

�a(Q j
L)[&* (&fL<

V, k f | NV=k)+&* (&fL<
W, N&k f | NV=k)]

Therefore we get

&* (Var&* ( f | NV ))�a(Q j
L) &* (&f L4 f )=a(Q j

L) E4 ( f, f ) (4.7)

From (4.6), (4.5) and (4.7) we obtain

Var&* ( f )�ekL d&1
[1+2a(Q j

L)] E4 ( f, f )�ek1L d&1a(Q j
L) E4 ( f, f ) (4.8)

All we need to do at this point is to ``remove the dot'', i.e., restore the
original interaction where Jxy=1 for all x and y. This is very simple since,
by a straightforward computations, we find that there is a constant k2 such
that

e&k2 ;dLd&1
�

&* (_)
&<

4, N(_)
�ek2 ;dLd&1

\_ # 0

which, combined with (4.8), yields

Var<
4, N( f )�e(k1+3k2) L d&1a(Q j

L) E<
4, N( f, f ) (4.9)

Since f is arbitrary (4.1) follows from (2.14). In this way we have proven
the lower bound (2.15) with free boundary condition and L=2n for some
integer n. K

4.2. Proof of Lemma 4.1

Throughout this subsection we use the notation (4.2), (4.3), (4.4).
Thanks to the spin-flip symmetry we can assume that the number of
particles is N�|4|�2=|V |. Choose f : 0 [ R and let

g(n)=&* ( f | NV=n) \n=&* [NV=n] \n=0,..., N (4.10)
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By Proposition 3.2 we get

Var\(g)�4(N+1)2 \ sup
i�N�2, j�i

\j

\i+
2

:
N

i=1

(\ i 7 \i&1)[ g(i)& g(i&1)]2

The result of Lemma 4.1 then follows if we can prove the following two
propositions:

Proposition 4.2. With respect to the notation introduced above, if
|4| is large enough,

\ sup
i�N�2, j�i

\j

\i +
2

�exp[k|4| (d&1)�d ]

for some k which depends on ;.

Proposition 4.3. Let 4//Zd, V/4 and W=4"V (W is not
necessarily a translate of V ). Then, with respect to the notation introduced
in (4.10), there exists some C which depends on ; such that

(1)

:
N

i=1

(\i 7 \i&1)[ g(i)& g(i&1)]2

�C[ |V | |W | |4| E4 ( f, f )+|4|8 &* (Var&* ( f | NV ))]

(2) If 4=Q j+1
L , V=Q j

L (so that W=4"V is a translate of V ) we
have

:
N

i=1

(\i 7 \ i&1)[ g(i)& g(i&1)]2

�C _ Ld+2

(N+1)( |4|&N+1)
E4 ( f, f )+|4|8 &* (Var&* ( f | NV ))&

The rest of this subsection is then devoted to proving these two
propositions.
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Proof of Proposition 4.2. Let qh(i)=+h, <
V [NV=i ] (remember (3.5)),

and, for simplicity let q(i)=q0(i). Since V and W are decoupled, and since
W is a translation of V, we have

\i=+J, <
4 (NV=i | N4=N )=

+<
V [NV=i ] +<

W [NW=N&i ]
+J, <

4 [N4=N ]

=
q(i) q(N&i)

+J, <
4 [N4=N ]

Hence

\j

\i
=

q( j) q(N& j)
q(i) q(N&i)

(4.11)

Since

+h, <
V ( f )=

+<
V (e2hNV f )

+<
V (e2hNV )

for all functions f, we can write for i=1,..., |V | and for all h # R,

q(i)=e&2hi+<
V (e2hNV 1[NV=i ])=e&2hi +<

V (e2hNV ) qh(i)

For all a # (0, |V | ), define now h� (a) by

qh� (a)(NV )=a (4.12)

(this is always possible because qh(NV ) is an increasing continuous func-
tion of h with range (0, |V | ). Let also

I(a)=2h� (a) a&log +<
V (e2h� (a) NV )

Thus we obtain

q(i)=e&I(i) qh� (i)(i) \i=1,..., |V |&1

A straightforward computation shows that I$(a)=2h� (a), so that I"(a)=
2h� $(a)�0. From the convexity of I it is easy to show that

I( j)+I(N& j)&(I(i)+I(N&i))�0 \i, j such that i�N�2, j�i

Hence, if i�N�2 and j�i, we have

\j

\i
�

qh� ( j)( j) qh� (N& j)(N& j)

qh� (i)(i) qh� (N&i)(N&i)
�

1

qh� (i)(i) qh� (N&i)(N&i)
(4.13)
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On the other side, thanks to Proposition 3.3 (recall (4.12)), we know that

qh� (i)(i)�\gap(Lh� (i), <
V )

|V | c g
M

7 1+ 1
(i+1)( |V |&i+1)

(4.14)

We need at this point a lower bound on the gap of the generator of a
suitable Glauber dynamics. In Theorem 4.12 of [CMM] the following
universal lower bound was proved:

Theorem [CMM]. Consider an arbitrary finite range interaction
I=[IA]A # F with range equal to r. Let &I&x=�A % x |IA | and &I&4=
supx # 4 &I&x (the interaction is not necessarily translation invariant). Let
L{

4 be the generator of a Glauber dynamics with finite range transition
rates cx(_) which satisfy the detailed balance principle w.r.t. the Gibbs
measure +I

4 . Assume also that cx(_)�c g
me&}1 &I&x . Then there exist

k(d, r, }1), such that, for each 4//Zd and for each { # 0, we have

gap(L{
4)�c g

m exp[&k; &I&4 |4| (d&1)�d ] (4.15)

It is easy to verify that with the same proof one can obtain a slightly
stronger result, where in the RHS of (4.15) the quantity &I&4 is replaced
by &I�2&4 , where I�2 is the set of all interactions involving at least 2
spins, i.e., excluding the magnetic field. Choose then the generator Lh, <

V of
the Glauber dynamics with Heat-Bath transition rates given by

cx(_)=[1+e({xH[x])(_)]&1

In this case we can take c g
m=1�2, }1=2 and c g

M=1. Furthermore we also
have for the nearest neighbour Ising model &I�2&x=2d, so we find

gap(Lh, {
V )� 1

2 exp[&2d;k |V | (d&1)�d ] for all h # R (4.16)

Replacing into (4.14), we have, for large enough |V |

qh� (i)(i)�exp[&;k$ |V | (d&1)�d ]

which, together with (4.13) implies the proposition. K

Remark. The reader may be puzzled by the fact that we have used
a ``dynamical'' argument to prove Proposition 4.2 which is a statement
about the equilibrium measure. A closer look at the proof of Theorem
CMM reveals however that there is really little dynamics involved, since
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the spectral gap is just an analytical tool which allows us to write the
Poincare� inequality

Var( f )�gap(L)&1 E( f, f )

The dynamics enters in the arguments only through its reversible-measure.
Of course one may still wonder if there is an easier proof of the inequality

+h� (i)
V [NV=i ]�exp[&;k$ |V | (d&1)�d ]

Such a proof (which we did not find) would eliminate the necessity of
Proposition 3.3 and Theorem CMM.

Proof of Proposition 4.3. Throughout this proof we will use the
notation (4.10). The idea is first of all to use the identities 3.4. Unfor-
tunately, in order to have sharp enough estimates, we need to use either the
first or the second one, depending on the value of NV . Let then

u=
(n+1)( |V |+1)

4+2

By Proposition 3.4 and the Schwartz inequality, we get

:
N

i=1

(\i 7 \i&1)[ g(i)& g(i&1)]2�2(A+B) (4.17)

where

A= :
wux

i=1

(\i 7 \i&1) A2
&(i)+ :

N

i=wux+1

(\i 7 \ i&1) A2
+(i)

(4.18)

B= :
wux

i=1

(\i 7 \i&1) B2
&(i)+ :

N

i=wux+1

(\i 7 \i&1) B2
+(i)

and, letting ci=i( |W |&N+i), c$i=i( |V |&N+i) and gxz=e&; {xzH4 1Exz
,

A+(i)=
1
ci

:
(x, z) # V_W

&* [({xz f ) 1Exz
| NV=i]

A&(i)=
1

c$N&i+1

:
(x, z) # V_W

&* [({xz f ) 1Exz
| NV=i&1]

(4.19)

B+(i)=
1
ci

\i&1

\i
:

(x, z) # V_W

&* [ gzx , f | NV=i&1]

B&(i)=
1

c$N&i+1

\i

\ i&1

:
(x, z) # V_W

&* [ gxz , f | NV=i]
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Estimate of the term B in (4.17). In order to estimate B+(i) we write

(&* [ gzx , f | NV=i&1])2�Var&* ( f | NV=i&1) Var&* (gzx | NV=i&1)

(4.20)

and we notice that

Var&* (gzx | NV=i&1)�&gzx &2
��&e&2; {xzH4&��e2; &{xzH4&��e 8d; (4.21)

Moreover, recalling (4.11) and using Proposition 3.1, we find

\i&1

\i
�

i
|V |&i+1

|W |&N+i
N&i+1

e8d;�|V | |W | e8d;

A straightforward calculation gives

cu=
(N+1)( |V |+1)[( |W |&N )( |V |+1+|W |+1)+(N+1)( |V |+1)]

( |4|+2)2

=(N+1)( |V |+1)( |W |+1)( |4|&N+1)( |4|+2)&2 (4.22)

Moreover, ci is increasing in i. So, using the Schwarz inequality, we obtain,
for i�wux+1,

B2
+(i)�c&2

u ( |V | |W | e8d;)2 ( |V | |W | ) :
(x, z) # V_W

(&* [ gzx , f | NV=i&1])2

�c&2
u ( |V | |W | )4 e32d; Var&* ( f | NV=i&1)

�
(|V | |W | )2 ( |4|+2)4

(N+1)2 ( |4|&N+1)2 e32d; Var&* ( f | NV=i&1)

The term B&(i) can be estimated in the same way. So, we have

B�C1(;)
|4|8

(N+1)2 ( |4|&N+1)2 &* (Var&* ( f | NV )) (4.23)

Estimate of the term A in (4.17). Before starting the estimate of the term
A in (4.17), we need the following definition.

Definition 4.4. Given a finite connected subset 4 of Zd a path
choice in 4 is a collection *=[*xz : (x, z) # 4_4] such that *xz is a self-
avoiding path from x to z inside 4.
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Given a path choice * in 4, and V/4 we let W=4"V and

GV (*)=max
e # E4

*[(x, z) # V_W : *xzc& e]

DV (*)= max
(x, z) # V_W

|*xz |

Now we claim that for some constant C2(;), the quantity A defined in
(4.18) satisfies, for all path choices,

A�C2(;)
|4|2

(N+1)( |V |+1)( |W |+1)( |4|&N+1)

_ DV (*) GV (*) :
e C&E4

&* [({e f )2] (4.24)

Once we prove inequality (4.24), the proof of Proposition 4.3 (and so of
Lemma 4.1) easily follows: For statement (1) we just observe that the big
fraction in (4.24) is less than 1, and that trivially GV (*)�|V | |W |,
DV (*)�|4|, for any path choice. Statement (2) is a bit more complicated.
If the geometry is like in statement (2) we then use the following path
choice. Given x # V and z # W start increasing (or decreasing) the first
coordinate of x until it is equal to the first coordinate of z. Then adjust the
second coordinate and so on until you get to z. With this particular path
choice it is easy to see that GV (*)�Ld+1. Assume in fact that the path *xz

contains the edge e=[u, v] where u and v differ in the j th coordinate. This
means that xi=ui for all i> j and zi=ui for all i< j. So the number of
possible pairs (x, z) is not greater than L j Ld& j+1=Ld+1. Moreover with
this geometry the big fraction is less than 4[(N+1)( |4|&N+1)]&1 and
DV (*)�dL. So we are left with the

Proof of Inequality (4.24). Since

1
ci

:
(x, z) # V_W

&* [Exz | NV=i]=1

we can use the Schwarz inequality and obtain

A+(i)2=_ 1
ci

:
(x, z) # V_W

&* [{xz f | NV=i, Exz] &* [Exz | NV=i]&
2

�
1
ci

:
(x, z) # V_W

&* [{xz f | NV=i, Exz]2 &* [Exz | NV=i] (4.25)
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Moreover ci and c$i are increasing in i. Thus, by (4.25) and the corresponding
inequality for A&(i)2, we obtain

A�
1
cu

:
wux

i=1

\ i&1 A2
&(i)+

1
cu

:
N

i=wux+1

\i A2
+(i)

�
1
cu

:
(x, z) # V_W

Yxz (4.26)

where

Yxz= :
N

i=0

&* [{xz f | NV=i, Exz]2 &* [Exz , NV=i]

+ :
N

i=0

&* [{xz f | NV=i, Ezx]2 &* [Ezx , NV=i]

If we denote by Bxz the sigma-algebra generated by ?x , ?z and NV we can
use the Schwarz inequality and we find

Yxz=&* [&* ({xz f | Bxz)2]�&* (({xz f )2 | Bxz)]=&* [({xz f )2] (4.27)

Let tx � z : 0 � 0 be the transformation that moves a particle from x to z
if this is possible, i.e.,

tx � z_={txz_
_

if _ # Exz

otherwise

and let Tx � z f =f b tx � z . Then we have ({xz f )2=(Tx � z f & f )2+
(Tz � x f & f )2, thus

Yxz=&* [(Tx � z f & f )2]+&* [(Tz � x f & f )2]

Let now * be any path choice. Thanks to Lemma 4.3 in [Y] we get that
there exists C3(;) such that

&* [(Tx � z f & f )2]�C3(;) |*xz | :
e C&*xz

&* [({e f )2]

which, together with (4.26), (4.22) and the definition of GV (*) and DV (*),
proves inequality (4.24) and by consequence Proposition 4.3 and Proposi-
tion 4.1. K
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4.3. Extension to all Boundary Conditions and all Values of L

Arbitrary Boundary Condition. Let { # 0 be an arbitrary
boundary condition. Then, letting h{=exp(H <

4 &H {
4), we have for all

_ # 04 such that NV (_)=N,

&{
4, N(_)

&<
4, N(_)

=
+{

4(_)
+<

4 (_)
=

h{(_)
+<

4 (h{)
�e2; &H {

4&H 4
<&��e4d; |�4|

Analogously we find

&{
4, N(_)

&<
4, N(_)

�e&4d; |�4|

therefore, from (2.14) we get

gap(L{
4, N )�e&12d; |�4| gap(L<

4, N )

Thus changing the boundary condition from free to { amounts to changing
the constant :1 in the lower bound (2.15)

Arbitrary Values of L. The recursive inequality (4.1) shows that
for all integers L

a(Q2L)�ekL d&1a(QL)

By an oversimplified version of the arguments leading to (4.1), one easily
proves that for any connected set 4 and any x � 4 such that 4 & [x] is
connected

sup
N

gap(L<
4 & [x], N )&1�C sup

N
gap(L<

4, N )&1 (4.28)

for a suitable constant C. Thus, by simple iteration of (4.28), one gets
immediately

a(Q2L+1)�ek$L d&1 a(Q2L) (4.29)

for a new constant k1 depending on C. Define now an#sup2n�L<2n+1 a(QL).
Then, thanks to (4.1) and (4.29), we have

an+1�e(k 7 k1) 2n(d&1) an

so that an�C$ek22n(d&1)
and part (b) of Theorem 2.1 follows.
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4.4. The Case ;=0

Here we show how to recover the well known result (see [LY] for the
same result under much more general hypotheses) that if ;=0 then

gap(L{
QL , N )�CL&2 (4.30)

The proof of (4.30) is almost identical to the proof of the lower bound
(2.15). we just need to be a little extra careful in certain estimates. First of
all we notice that, since ;=0 we have

gxz=e&; {xzH4 1Exz
=1Exz

so

:
(x, z) # V_W

&* [ gxz , f | NV=i]=&* [(i(N&i)), f | NV=i]=0

Therefore the B term in (4.18) is zero, and so statement (2) of Proposition 4.3
becomes

:
N

i=1

(\i 7 \i&1)[ g(i)& g(i&1)]2�C
Ld+2

(N+1)( |4|&N+1)
E4 ( f, f ) (4.31)

Assume now that we can prove that, when \n is defined by (4.10), we have
for all functions g on [0, 1,..., N ]

Var(g)�16?
N( |4|&N )

|4|
:
N

i=1

(\ i 7 \i&1)[ g(i)& g(i&1)]2 (4.32)

Then we would be pretty much done. In fact, from (4.31) and (4.32) we get
the following improvement of Lemma 4.1

Var&* (&* ( f | NV))�CL2E4 ( f, f ) (4.33)

By consequence (4.8) becomes

Var&* ( f )�[a(Q j
L)+CL2] E4 ( f, f )

which implies a(Q j+1
L )�a(Q j

L)+CL2, and so

a(Q2L)�a(QL)+dCL2
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If we let bL=a(QL)�L2 we then get

b2L�
bL

4
+C$

which, iterated, show that the sequence bL is bounded, i.e., that the inverse
of the spectral gap is bounded by C" L2. Thus we are left with the proof
of (4.32) which is more or less a straightforward computation. We have
4=V _ W with W a translate of V, so |4| is even and we set |4|=2R. We
can assume, by symmetry, that N�R. We proceed as in the proof of
Proposition 3.2, by introducing a continuous time Markov chain with rates
given by (3.2). So, with respect to the notation of Proposition 3.2 we get

*&1�8MI &2=16I &2 (4.34)

where

I&1� sup
n�N�2

:
n

i=0

\i

\n

Since ;=0 we have

\i=&* [NV=i ]=
\R

i + \
R

N&i+
\2R

N +
thus, if we let J=N�2, i=J&x, and D=J(R&J )�R, we get

\ i&1

\i
=

i(R&N+i)
(R&i+1)(N&i+1)

=
(J&x)(R&J&x)

(J+x+1)(R&J+x+1)

�\1&
x
J+ \1&

x
R&J+�e&(J&i)�D

Therefore, for all j�J,

\i&k

\i
�exp _&

1
D

:
k&1

j=0

(J&i+ j)&�exp _&
1
D

:
k&1

j=0

j&=e&k(k&1)�(2D)
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Finally we can estimate I &1 by

I &1� :
n

k=0

\n&k

\n
�2+ :

n

k=2

e&k(k&1)�(2D)=2+ :
n

k=1

e&k(k+1)�(2D)

�2+ :
n

k=1

e&k2�(2D)�2+|
�

0
e&x2�(2D)�- 2?D=�?

N( |4|&N )
|4|

which, together with (4.34) implies (4.32).

5. GEOMETRIC RESULTS

In this section we derive some geometric results that will be used in the
proof of the upper bound (2.16) which appears in part (b) of Theorem 2.1.
The main goal is to prove Proposition 5.4. Most of the results contained
in this and in the next sections have analogous versions in the paper [PV]
which addresses in great generality the problem of the large deviations in
the 2-dimensional Ising model. Unfortunately, in most cases, we cannot
make direct references to results contained in this paper since our setting
is different.

We denote by D the set of all rectifiable curves # # R2 such that # is
either a closed curve inside the unit open square Q=[(x, y) # R2:
0<w<1, 0< y<1] or it is an open curve, which, with the exception of its
endpoints, is entirely contained in Q. The collection of (finite or countable)
families of curves in D will be denoted by D*. Given a family #

�
# D* we

fix an arbitrary point x0 # Q in such a way that x0 does not lie on any
curve of #

�
, and we define the set A#

�
as the union of those points x # Q such

that any path connecting x with x0 has a odd number of intersections
(counting multiplicities) with #

�
, provided that this number is finite. We also

let B#
�
=Q"A#

�
and we can always assume that x0 has been chosen such that

|A#
�
|�|B#

�
|

where |X | denotes the (Lebesgue) volume of any measurable subset
X/R2. We define the phase volume of the family #

�
as

V(#
�
)=|A#

�
|

Given ;>0 we also define the Wulff functional W : D [ [0, �] as (we
omit the dependence of W on ;)

W(#)=|
#

{;(n� s) ds
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where s is the length parameter of the curve #, n� s is the unit normal vector
to the curve # at the point s, and {;(n� s) is the surface tension (see for
instance [DKS]) at inverse temperature ;. We extend {; to a function on
R2 by setting

{;(x)=|x|2 {; \ x
|x|2+ x # R2

The surface tension of the two dimensional Ising model can be computed
exactly [A], [ABSZ]. What we will use are the following two properties
(the first one is actually a general consequence of the second Griffith
inequality. See (6.29) in [P])

(1) For all x, y # R2 we have {;(x+ y)�{;(x)+{;( y)

(2) {;((1, 0))�{;(x) for all x such that |x|2=1.

We extend the Wulff functional from D to D*, by letting

W(#
�
)= :

# # #
�

W(#) #
�

# D*

We finally define the function .� (v), 0<v��, as

.� (v)={inf[W(#
�
): #

�
# D*, V(#

�
)=v]

.� (1�2)
if 0<v� 1

2

if 1
2<v

(5.1)

The value .� (v) can be computed exactly (see [Sh] where however there is
a mistake in the expression for .� (v) due to a misprint) and the result is

.� (v)= 1
2 w(- v 7 - v0 ) (5.2)

where the constant w is defined as w=W(#w) and #w is the Wulff curve
(see, e.g., [Sh] or [DKS]) which depends on ; and it is characterized by
the fact that it is the unique solution to the following variational problem

w=W(#w)=min[W(#): # is a closed curve enclosing a unit area] (5.3)

The singularity point v0 satisfies the equation

1
2 w - v0 ={;((1, 0)) (5.4)

It is fairly easy to show that the infimum in (5.1) is attained when #
�

is a
single curve which corresponds to
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(1) a quarter of a Wulff shape centered at one of the four corners of
Q if v�v0

(2) a unit (horizontal or vertical) segment if v�v0 .

We set then

1w(v)=[# # D : V(#
�
)=v, W(#)=.� (v)] (5.5)

In the following proposition we prove a stability property of the variational
problem (5.1) which will be used later.

Proposition 5.1. Let v # (0, 1�2]. For all =>0 there is a $=
$(=, v)>0 such that if #

�
# D* satisfies V(#

�
)=v and W(#

�
)�.� (v)+$, then

there exists v$ # (0, 1�2] with |v&v$|�= and #1 # #
�

such that

inf
# # 1w (v$)

dH(#1 , #)�= and :
# # #

�
: #{#1

V(#)�=

Proof. The proof relies on the following preliminary results, Lemma 5.2
and Lemma 5.3

Lemma 5.2. let vi # (0, 1�2] for i=1,..., n, and let v=�n
i=1 vi . Then

:
n

i=1

.� (vi )�.� (v) � v
max i vi

Proof. We can assume v1�v2� } } } �vn .

Case 1: v1�v0 . In this case we can write

:
n

i=1

.� (vi )=
1
2

w :
n

i=1

vi

- vi

�
1
2

w
v

- v1

�.� (v) � v
v1

Case 2: v1>v0 . Let s be such that v1� } } } �vs�v0>vs+1� } } }
�vn . Then

:
n

i=1

.� (vi )=
1
2

w _ :
s

i=1

- v0 + :
n

i=s+1

- vi &
�

1
2

w - v0 :
n

i=1
�vi

v1

�
1
2

w �v0v
v1

=.� (v) � v
v1

K
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Lemma 5.3. For all v # (0, 1�2], all =>0 there exists $$(=, v)>0
such that for all # # D with V(#)=v and W(#)�.� (v)+$$ we have

inf
#$ # 1w (v)

dH(#, #$)�=

Proof. This statement follows from a simple compactness argument.
For a proof see Lemma 12.4 in [PV].

We can finally prove 5.1. Let #
�
=[#1 , #2 ,...], let vi=V(#i ) and assume

v1�v2� } } } . Let also

v$=:
i

vi and a= :
i�2

vi

Clearly v$�v. Thus, by Lemma 5.2, we have

W(#
�
)=:

i

W(#i )�:
i

.� (v i )�.� (v$) �1+
a
v1

�.� (v) �1+
a
v1

�.� (v) \1+
1
4

(a 7 - a)+
Let a$ be defined by .� (v)(a$ 7- a$ )�4=$. The hypothesis W(#

�
)�.� (v)+$

then implies a�a$ . Choose then $>0 such that

(1) a$<=

(2) .� (v1+a$)+$<.� (v1)+$$, where $$ is the quantity defined in
Lemma 5.3.

Since v�v$=v1+a, and a�a$ , we have

W(#1)�.� (v)+$�.� (v1+a$)+$<.� (v1)+$$

and so we can conclude by using Lemma 5.3 and the fact that |v&v1|�
a$<=. K

We define now a subset U/Q. Our choice is somehow arbitrary. We
could have chosen any other set for which Proposition 5.4 holds. Divide Q
into 16 equal squares of side 1�4 an call these squares

A1, A2,..., B1, B2,..., D4

as in a chessboard. Then we define (see Fig. 1)

U=A1 _ B1 _ B2 _ C1 _ C2 _ D1 _ D2 _ D3 (5.6)
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Fig. 1. The set U.

We let VU (#
�
)= |A#

�
& U | and

V*U (v)=[VU (#) : # # 1w(v)]

In other words V*U (v) is the collections of all the possible values |A#
�
& U |

when #
�

is such that it minimizes the quantity .� (v). Let now

�� (v)={inf[W(#
�
): #

�
# D*, V(#

�
)=v, VU (#

�
)=v�2]

�� (1�2)
if 0<v� 1

2

if 1
2<v

(5.7)

We now state the main result of this section.

Proposition 5.4. For all v # (0, 1�2] we have �� (v)>.� (v).

Proof. Proposition 5.4 follows from Proposition 5.5 given below plus
the observation that for all v # (0, 1�2] there exists =(v) such that if
|v$&v|�= then d(v�2, V*U (v$))>=.

Proposition 5.5. Let v # (0, 1�2]. For all =>0 there is a $1=
$1(=, v)>0 such that if #

�
# D* satisfies V(#

�
)=v and W(#

�
)�.� (v)+$1 , then

there exists v$ # (0, 1�2] with |v&v$|�= and d(VU (#
�
), V*U (v$))�=.

Proof. Is it easy to see that, for all #1 , #2 in D we have

|VU (#1)&VU (#2)|�kdH(#1 , #2)( |#1 | 7 |#2 | )

for some universal constant k. So in particular, if #2 # 1w(v) then

|VU (#1)&VU (#2)|�k1dH(#1 , #2)

where k1 equals k times the maximum length of a Wulff curve.
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For =>0 let then $1(=, v)=$(=$, v) where $ is defined in Proposition 5.1
and =$==�(1+k1). Assume that V(#

�
)=v and W(#

�
)�.� (v)+$1 , Thanks

to Proposition 5.1 we know that there is #1 # #
�
, v$ # (v&=$, v+=$) and

#w # 1w(v$) such that dH(#1 , #w)<=$ and �#{#1
V(#)�=. This implies

|VU (#1)&VU (#w)|�k1 =$

and

|VU (#
�
)&VU (#1)|� :

# # #
�

: #{#1

V(#)�=

Thus we get

|VU (#
�
)&VU (#w)|�(1+k1) =$�= K

We conclude this section with two results which will be used in the proof
of Lemma 6.6.

Proposition 5.6. Far all v # (0, 1�2], =>0 there exists $>0 such
that if W(#

�
)<�� (v)&= then

|V(#
�
)&v|+|VU (#

�
)&v�2|>$

Sketch of the Proof. Assume the statement to be false. Then there
exists some v # (0, 1�2], =>0 such that for all $>0 there is #

�
# D* such that

|V(#
�
)&v|+|VU (#

�
)&v�2|�$

But if this is true we can easily construct a new #
�
$, by adding to #

�
two small

closed curves of appropriate areas, such that

(1) V(#
�
$)=v and VU (#

�
$)=v�2

(2) W(#
�
$)�W(#

�
)+C - $

So if $ is small enough we use the definition of �� (v) and we get a contra-
diction. K

For v, w # [0, 1�2] we define the quantities

m̂+(v)=m*(1&2v)

m̂&(v)=&m*(1&2v)

m̂+
U (w)=2m*(1�2&2w)

m̂&
U (w)=&2m*(1�2&2w)
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To understand why we introduce these quantities, let v=V(#
�
) and let

w=VU (#
�
). If the set A#

�
had a uniform ``magnetization density'' &m* and

the set B#
�

had a uniform magnetization density +m*, then m̂+(v) would
be the magnetization in Q and m̂+

U the magnetization in U. If viceversa
we have +m* on A#

�
and &m* on B#

�
then we get m̂&(v) and m̂&

U (w) as
the respective magnetizations on Q and U. For any m # [0, m*] we let
.(m)=.� (v) and �(m)=�� (v) where v is such that m=m̂+(v).

Proposition 5.7. Let v # (0, 1�2], $>0, and let m=m̂+(v). If
either

|m&m̂+(v$)|+|m&m̂+
U (w$)|�$

or

|m&m̂&(v$)|+|m&m̂&
U (w$)|�$

then we have

|v&v$|+|v�2&w$|�
2$
m*

We omit the elementary proof.

6. PROOF OF THE UPPER BOUND

In this section we prove the upper bound (2.16) which appears in part
(b) of Theorem 2.1. The proof proceeds along the following steps: first we
show that, roughly, (see (6.16) for a precise statement)

gap(L<
QL, NL

m )�CL
+;, <

QL
[mQL

(_)tm, mUL
(_)tm]

+;, <
QL

[mQL
(_)tm]

(6.1)

where UL is the rescaled version of the set U defined in the previous section
and, for a finite volume A, we let mA(_)=|A|&1 �x # A _(x). Inequality
(6.1) comes from the variational characterization of the spectral gap given
in (2.14) when one uses an appropriate ``trial function''. Next we show that

+;, <
QL

[mQL
(_)tm, mUL

(_)tm]�e&�(m) L (6.2)

and that

+;, <
QL

[mQL
(_)tm]�e&.(m) L (6.3)
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where . and � were defined just before Proposition 5.7. Finally we use
Proposition 5.4, and we are done. The upper bound (6.2) is proven along
the lines of similar results in [I] and [CGMS]. The lower bound (6.3) is
a local large deviation type of result and its proof requires a more recent
technology developed in [IS].

6.1. Contours, Skeletons

Below we define contours and skeletons and summarize some of their
properties. For a more detailed exposition see, for instance [CGMS].

Contours. We use the contour representation with the so called
splitting rules. Given a configuration _ # 0, a generalized boundary condi-
tion ' # 0� (see Section 2), and 4//Zd we define B'

4(_) as the set of all
unsatisfied edges in E� 4 , i.e., if \=_4'4c , then

B'
4(_)=[e*=[x, y]* # E� 4 : \(x) \( y)=&1]

If the b.c. ' is + (or &), then B'
4(_) is closed, while in general it has a

nonempty boundary. It is useful to decompose B'
4(_) and, in general, any

arbitrary set X of dual edges as a collection of contours #i

X=#1 _ } } } _ #n (6.4)

which have the advantage that they can be associated with simple self-
avoiding (open or closed) curves in R2. If B'

4(_)=#1 _ } } } _ #n is the
decomposition in contours, we let

G'
4(_)=[#1 ,..., #n] (6.5)

Decomposition (6.4) is intuitively obtained by cutting all three and four
edges meetings, along the south-west to north-east direction (see [CGMS]
for details). Figure 2 shows a set of edges on the left and the corresponding
collection of contours on the right.

Fig. 2. A collection of edges (left) is split into a collection of contours (right).
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Given a set E of edges (or dual edges), a contour # in E is a finite
sequence of sites #=(x1 ,..., xn) with [xi , xi+1] # E and subject to certain
selfavoiding constraints [CGMS]. If x1=xn the contour is called closed,
otherwise it is open. The boundary $# of a contour is given by the usual
boundary of # when # is thought of as a set of edges. Thus $# can either
be empty or consist of pair of sites. Given a collection of contours
#
�
=[#1 ,..., #n], its boundary $#

�
is defined as

$#
�
= .

n

i=1

$#i

A notion of compatibility between contours can be introduced in such a
way that, for each simply connected finite volume 4 and for each { # 0� ,
{{0, the mapping G{

4 is one-to-one from 04 onto the set of all compatible
collections of contours with a given boundary determined by {. If, on the
other side, one considers free boundary conditions then the mapping G<

4

is two-to-one from 04 onto the set of all compatible collections of con-
tours. We let C*4, { be the image of G{

4 , i.e., the set of all compatible collec-
tions of contours, in the volume 4 with generalized boundary condition {.
In particular we have that C*4, < consists of all compatible collections of
contours #

�
such that (remember definition (2.1) and the definition of V( } )

given in Section 2)

(1) #
�
/E� 4 "$4

(2) For all # # #
�
, we have that # is either closed or open with

$#/V($4)

A compatible collection of contours #
�

splits 4 into the disjoint union 4=
4#

�
_ B#

�
such that if _ is the configuration corresponding to #

�
(i.e., if

G'
4(_)=#

�
), then _ is constant on both A#

�
and B#

�
. We assume that

|A#
�
|�|B#

�
|. It can be shown that for each #

�
# C*4, < there exists 2s(#

�
)/4

such that

[#
�
/G<

4 ]=[_(x)=+1 \x # A#
�
& 2s(#

�
) and _(x)=&1\ x # B#

�
& 2s(#

�
)]

_ [_(x)=&1 \x # A#
�
& 2s(#

�
) and _(x)=+1 \x # B#

�
& 2s(#

�
)]

(6.6)

The set 2s(#
�
) consists of all sites x such that d2(x, #

�
)=1�2 plus some of the

sites x such that d2(x, #
�
)=1�- 2 [CGMS]. We then define

A%#
�
=A#

�
"2s(#

�
) B%#

�
=B#

�
"2s(#

�
) (6.7)
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In other words, knowing that #
�

is a subset of the set of all contours is
equivalent to knowing that _=+1 on one ``side'' of #

�
and _=&1 on the

opposite side, or viceversa. A contour # is said to be s-large if diam(#)>s.
For any compatible collection of s-large contours #

�
in 4, we let

E#
�
=[_ # 04 : #

�
is the set of all s-large contours of _] (6.8)

We also define

+{
4, s=+{

4( } | E#
�
=<) (6.9)

i.e., the subscript s means that the measure is conditioned to have only
s-short contours. A generalized boundary condition ' is called of type
(s, +) if '�0 and there is a sequence of consecutive +1 spins in �+4
whose length is at least s. Given a generalized boundary condition ' and
a volume 4 we define another (generalized) b.c. '+, 4 (or '&, 4), by

'\, 4(x)={'(x)
\

if x # 4c

if x # 4
(6.10)

Skeletons. Given a sequence (u1 ,..., un) of dual sites, we denote by
P=[u1 ,..., un] the polygon

[u1 ,..., un]= .
n

i=2

[ui&1 , u i]

If u1=un P is said to be closed ($P=<), otherwise it is open and its
boundary is $P=[u1 , un]. P is called a s-skeleton if

s
2

�|ui+1&ui |��2s \i=1,..., n&1

Given now a contour # we say that # is consistent with an s-skeleton
P=[u1 ,..., un], and we write #tP, if

(i) All vertices of P lie on #

(ii) $#=$P

(iii) dH(#, P)�s

It is easy to check that for each contour # with diam(#)�s, there always
exists a s-skeleton S consistent with #. In particular, it is always possible to
associate a particular s-skeleton S to any s-large contour #. We assume that
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a definite choice has been made once and for all, and S� s(#) denotes the
skeleton of #. We extend the mapping S� s to collections of contours by

S� s(#
�
)=[S� s(#): # is s-large] (6.11)

Given 4 # F and ' # 0� we also (improperly) define, for _ # 04 , S� s(_)=
S� s(G'

4(_)). Finally, given a set of skeletons S=[S1 ,..., Sr] we let

Es(S)=[_ # 04 : S� s(_)=S]

We also set

W(S)= :
r

i=1

W(Si )

where, for any s-skeleton S=[x1 ,..., xk],

W(S)# :
k

i=2

{;(xi&xi&1)

In the following two propositions we collect some results which will be
used later.

Proposition 6.1. Let 4//Zd and let #
�

# C*4, < be a compatible
collection of s-large contours. Then if FA # FA#

�
% and FB # FB #

�
% we have

(remember (6.10))

+<
4 (FA & FB | E#

�
)= 1

2 [+'+, 4

A#
�
%, s (FA) +'&, 4

B #
�
%, s (FB)++'&, 4

A#
�
%, s (FA) +'+, 4

B #
�
%, s(FB)]

Proof. The result easily follows from the identity (6.6) and from the
DLR compatibility conditions.

Proposition 6.2. Let 4//Zd, V/4, V%=V "�2sV (remember
the definition preceding (2.1)) and F # FV% . Then

min
v# \

min
W : V%/W/V

+ v
W, s(F )�+'

4, s(F )�max
v# \

max
W : V%/W/V

+ v
W, s(F )

If, moreover, ' is of type (s, +), then

min
W : V%/W/V

++
W, s(F )�+'

4, s(F )� max
W : V%/W/V

++
W, s(F )
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Fig. 3. An example of how to construct the Z-path of Proposition 6.2.

Proof. Given a site x # Zd we let xnw, xne, xsw, xse be the 4 next-to-
nearest neighbors of x, where nw means north-west and so on. The set
(x1 ,..., xn) is called a Z-path if either xi+1 is a nearest neighbor of xi , or
xi+1=xsw

i or xi+1=xne
i . Let

�� V=�+V _ .
x # �V

[xsw, xne]

Now we claim that either (see Fig. 3)

(i) there is a Z-path of +1 spins in �2sV _ �� V encircling V%, or

(ii) there is a Z-path of &1 spins in �2sV _ �� V encircling V%.

In fact, if neither (i) nor (ii) hold then there are both a Z-path of +1 spins
and a Z-path of &1 spins connecting �+V with V%. We then observe that
the splitting rules assure that a Z-path of +1 (or &1) spins never crosses
a contour. This implies that there exists a contour which separates the two
paths connecting �+V with V%. Thus this contour has a diameter of at
least 2s which is +'

4, s -almost surely forbidden. Therefore we define C(_) as
the most external Z-path of +1 or &1 spins which surrounds V% and we
can write

inf
C

+'
4, s(F | C(_)=C)�+'

4, s(F )�sup
C

+'
4, s(F | C(_)=C)
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The proof is then completed by a standard argument based on the DLR
property of the Gibbs measures. In order to prove the last statement we
only need to observe that if the boundary condition is of type (s, +) then
the alternative (ii) is not allowed, because otherwise there would be a long
contour separating the Z-path of &1 spins from a stretch of consecutive
+1 spins in the boundary condition whose length is at least s. K

6.2. Proof of the Upper Bound

Throughout this subsection we assume to have chosen once and for all
the skeleton scale as

s(L)=L\ \< 1
2 (6.12)

For simplicity we assume L to be a multiple of four. In this way there no
ambiguity when we define the macroscopically rescaled version of the set U
defined in (5.6)

UL=[(Lx, Ly)&( 1
2 , 1

2): (x, y) # U ] & Z2

The volume of UL is |UL |=L2�2. Consider then the trial function

f (_)=1[NUL
(_)�wNm

L �2x] (6.13)

If we plug fL in the variational characterization of the gap (2.14) we get
that the Dirichlet form can be bounded from above by

E<
QL , NL

m( f, f )�4cML&;, <
QL , NL

m[NUL
(_)=wNm

L �2x] (6.14)

while the variance Var<
QL , NL

m( fL) tends to 1�4 as L � �. Define now the
event

Mm
L =[ |mQL

(_)&m|�10�L2, |mUL
(_)&m|�10�L2] (6.15)

From equation (6.14) we get

gap(L<
QL , NL

m )�CL
+;, <

QL
[NQL

(_)=Nm
L , NUL

(_)=wNm
L �2x]

+;, <
QL

[NQL
(_)=Nm

L ]

�CL
+;, <

QL
(Mm

L )

+;, <
QL

[NQL
(_)=Nm

L]
(6.16)

for a suitable positive constant C.

253Spectral Gap for Kawasaki Dynamics at Low Temperature



Remark. In [PV] the authors consider the conditional probability
measures +;, {

QL
( } | A(m, c)) where

A(m, c)=[ |NQL
(_)&Nm

L |�|QL | L&c]

c # (0, 1�4) and { is a fairly arbitrary boundary condition. Their results are
however insufficient for our purposes, since we need to condition to the event
of having a precise number of particles. The upper bound of Theorem 2.1
then follows form Proposition 5.4 and from Theorems 6.3, Proposition 6.4
given below.

Theorem 6.3. Let ;>;c , m # (&m*(;), m*(;)), and let Nm
L =

w(1+m) |QL |�2x. Then

lim
L � �

&
1
L

log[+;, <
QL

[NQL
=Nm

L ]]=.(m)

The proof is given in the next section.

Proposition 6.4. Let ;>;c and m # (&m*(;), m*(;)). Then

lim inf
L � �

&
1
L

log +;, <
QL

(Mm
L )��(m)

Proof. Given now 0<$<�(m), we define the event

K$=[_: W(S� s(_))�(�(m)&$) L]

and write

+;, <
QL

(Mm
L )�+;, <

QL
(Mm

L | K c
$)++;, <

QL
(K$) (6.17)

In order to estimate the second term we can use Lemma 5.2 in [CGMS]
which says that

lim inf
L � �

&
1
L

log +;, <
QL

(K$)��(m)&$

Next we want to prove that

lim inf
L � �

&
1
L

log +;, <
QL

(Mm
L | K c

$)=+� (6.18)
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We denote by R$, L the set of all compatible collections of (free boundary
conditions) s-large contours #

�
in QL , such that W(S� s(#

�
))<(�(m)&$) L.

We also let

E#
�
=[_ # 0QL

: #
�

is the set of all s-large contours for _]

We can then write

+;, <
QL

(Mm
L | K c

$)� sup
#
�

# R$, L

+;, <
QL

(Mm
L | E#

�
) (6.19)

Bound on (6.19) when #
�
{<.

Assume #
�
{<.

Definition 6.5. Given a positive integer L and $>0 and a collec-
tion of large contours #

�
, we say that _ # E#

�
produces a $-natural magnetiza-

tion pattern (in QL) if either (remember (2.2))

(1) |MA#
�
%+m* |A%#

�
| |+|MA#

�
% & UL

+m* |A%#
�
& UL | |+|MB #

�
%&m* |B%#

�
| |

+|MB#
�
% & UL

&m* |B%#
�
& UL | |�$L2, or

(2) |MA#
�
%&m* |A%#

�
| |+|MA#

�
% & UL

&m* |A%#
�
& UL | |+|MB #

�
%+m* |B%#

�
| |

+|MB#
�
% & UL

+m* |B%#
�
& UL | |�$L2

We let E $&nat
#
�

the subset of all the configurations in E#
�

which correspond
to a $-natural magnetization pattern.

The following two results, Lemma 6.6 and Lemma 6.7 are now suf-
ficient for finding an appropriate upper bound on the RHS of (6.19).

Lemma 6.6. For all $>0, m # [0, m*(;)) there exist $ $=$$(;, m, $)
and L0=L0(;, m, $) such that for all L�L0 and for all #

�
# R$, L , we have

Mm
L & E#

�
/(E $$&nat

#
�

)c

Lemma 6.7. For all $>0, m # [0, m*(;)) there exist c=c(;, m, $)
>0 and L0=L0(;, m, $) such that for all L�L0 and for all #

�
# R$, L

+;, <
QL

((E $&nat
#
�

)c | E#
�
)�e&cL2�s(L)2

(6.20)

Proof of Lemma 6.6. Assume #
�

# R$, L , #
�
{< and let S=S� s(#

�
).

Since W(S)�(�(m)&d ) L we have that the length of S cannot exceed
C1L (C1 depends on ; and m). But since dH(S, #

�
)�s(L), we get that the

length of #
�

cannot exceed C2s(L) L, so

|2s(#
�
) |�C3s(L) L (6.21)
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Assume now to have a $$-natural magnetization pattern for some $$>0.
For simplicity we assume that statement (1) of Definition 6.5 holds. The
case when (2) holds is analogous. Let then

v=
1
2 \1&

m
m*+ so that m=m̂+(v) (6.22)

and

v1=|A%#
�
|�L2, w1=|A%#

�
& UL |�L2,

(6.23)
v2=|AS |�L2, w2=|AS & UL |�L2

Then we have

MQL
=MA#

�
%+MB#

�
%+M2s(#

�
)=MAS

+MBS (6.24)
MUL

=MA#
�
% & UL

+MB#
�
% & UL

+M2s(#
�
) & UL

=MAS & UL
+MBS & UL

From (6.23), (6.24), and from the assumption of having a $$-natural
magnetization pattern, we obtain

|mQL
&m̂+(v1)|+|mUL

&m̂+
U (w1)|�$$+C3s(L)�L

If |mQL
&m|�10�L2 and |mUL

&m|�10�L2 and L is large enough, the
previous inequality becomes

|m&m̂+(v1)|+|m&m̂+
U (w1)|�2$$ (6.25)

From Proposition 5.7 we find now

|v&v1 |+|v�2&w1 |�
4$$
m*

(6.26)

On the other side, since W(S)<�� (m)&$, by rescaling and by Proposition 5.6
we get that there exists $"=$"(m, $) such that

|v&v2 |+|v�2&w2 |>$" (6.27)

Finally from the definition of skeletons it follows (see for instance Lemma 5.13
of [DKS]) that

|v1&v2 |�C4

s(L)
L

and |w1&w2 |�C4

s(L)
L

(6.28)
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for some universal constant C4 . Inequalities (6.26), (6.27) and (6.28) clearly
generate a contradiction if, say, 4$$�m*�$"�10 and C4 s(L)�L�$"�10. K

Proof of Lemma 6.7. We can write

E $, nat
#
�

=Y1 _ Y2

where Yi is the event that statement (i) of the Definition 6.5 holds. Also,
we have

(Yi )
c/ .

4

j=1

G i
j

where G1
1=[ |MA#

�
%+m* |A%#

�
| |�$L2�4] and so on. Thus

(E $, nat
#
�

)c=(Y1)c & (Y2)c= .
4

i=1

.
4

j=1

G1
i & G2

j

So, in order to estimate the LHS of (6.20) it is enough to find an
appropriate upper bound for each term

+;, <
QL

(G1
j & G2

j | E#
�
)

We show now how to deal with one of them, say the G1
1 & G2

4 term, since
the others can be treated analogously. Using proposition 6.1 and the spin
flip summetry, we get

+;, <
QL

(G1
1 & G2

4 | E#
�
)=+;, <

QL
([ |MA#

�
%+m* |A%#

�
| |�$L2�4]

& [ |MB#
�
% & UL

+m* |B%#
�
& UL | |]�$L2�4 | E#

�
)

= 1
2 +;, <+, QL

A#
�
%, s ( |MA#

�
%+m* |A%#

�
| |�$L2�4)

_+;, <&, QL

B#
�
%, s ( |MB#

�
% & UL

+m* |B%#
�
& UL | |�$L2�4)

+ 1
2 +;, <&, QL

A#
�
%, s ( |MA#

�
%+m* |A%#

�
| |�$L2�4)

_+;, <+, QL

B#
�
%, s ( |MB#

�
% & UL

+m* |B%#
�
& UL | |�$L2�4)

� 1
2 +;, <&, QL

B#
�
%, s ( |MB#

�
% & UL

+m* |B%#
�
& UL | |�$L2�4)

+ 1
2 +;, <&, QL

A#
�
%, s ( |MA#

�
%+m* |A%#

�
| |�$L2�4)

= 1
2 +;, <+, QL

B#
�
%, s ( |MB#

�
% & UL

&m* |B%#
�
& UL | |�$L2�4)

+ 1
2 +;, <+, QL

A#
�
%, s ( |MA#

�
%&m* |A%#

�
| |�$L2�4)
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From this inequality and similar ones for the other terms we get

+;, <
QL

((E $&nat
#
�

)c | E#
�
)�8 :

D=A#
�
%, B#

�
%

[+;, <+, QL
D, s [ |MD&m* |D| |�($�4) L2]

++;, <+, QL
D, s [ |MD & UL

&m* |D & UL | |�($�4) L2]]

(6.29)

Notice then that since #
�

is a collection of s-large contours, the boundary
condition <+, QL which appears in the Gibbs measures on the right hand
side of (6.29) is of type (s, +). Also we can assume that each of the four
sets A%#

�
, B%#

�
, A%#

�
& UL and B%#

�
& UL has a volume at least ($�8) L2, otherwise

the corresponding term in (6.29) would be zero. Finally, since #
�

# R$, L the
length of #

�
cannot exceed C1 Ls(L) and, by consequence, the length of the

boundary of each of the four sets under consideration is bounded by
C2 Ls(L). So we can apply Proposition 6.8 given below and we obtain

+;, <
QL

((E $&nat
#
�

)c | E#
�
)�32e&cL2�s(L)2

K

Proposition 6.8. Let :, =>0 and let L be a positive integer.
Consider a finite volume 4 with a boundary condition ' type (s(L), +).
Let also V/4 be such that

(i) |V |�:L2,

(ii) |�V |�c1 L#�s(L) where #<2 and c1 is a positive constant. Then
there exists c=c(:, =, #, ;)>0 such that if L is big enough

+;, '
4, s[ |mV (_)&m*|�=]�e&cL2�s(L)2

(6.30)

Proof. The hypothesis (i) and (ii) on V guarantee that, for L large
enough,

|V%|=|V "�sV |�
3:
4

L2 (6.31)

and

|mV (_)&mV%(_)|�
=
2

(6.32)

we thus have that the LHS of (6.30) can be bounded from above by

+;, '
4, s { |mV%(_)&m*|�

=
2=� max

W : V%/W/V
+;, +

W, s { |mV %(_)&m*|�
=
2= (6.33)
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where in the second inequality we used Proposition 6.2. By construction
the set W where the maximum is attained satisfies |W |�3:�4 L2 and
|W"V%|�|�sV |�c1 L# so that, for L large enough,

|mW (_)&mV%(_|�
=
4

and the RHS of (6.33) can be bounded from above by

�+;, +
W, s { |mW (_)&m*|�

=
4=

�+;, +
W, s {mW (_)�m*&

=
4=+

+;, +
W [mW (_)�m*+=�4]

+;, +
W [all contours are small]

(6.34)

Using Lemma 3.1 of [I], we have that there exists a constant c$=
c$(:, =)>0 such that

+;, +
W, s {mW (_)�m*&

=
4=�exp {&c$

L2

s(L)2= (6.35)

We now bound the other term. By construction |�W |�|�sV |+|�V |�
c2L# where c2 is a suitable positive constant, for any L large enough, we
can use inequality (4.8) in [I] and get that there exists a constant c"=
c"(:, =, #, ;)>0 such that

+;, +
W {mW (_)�m*+

=
4=�exp [&c" L2] (6.36)

We finally estimate the denominator in (6.34). We have

+;, +
W [all contours are small]

�1&+;, +
W [there exists a V-path of & spins with diameter�s(L)]

�1&+ ;, +[there exists a V-path of & spins with diameter�s(L)]
(6.37)

where we have used the FKG property [FKG] in the second inequality
and + ;, + denotes the infinite volume plus phase. Finally, using the result
of [CCS], we have that the right hand side of (6.37) tends to one as
L � �. If we now combine (6.35)�(6.37) we obtain (6.30). K
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Bound on (6.19) when #
�
=<. In this case we write

+;, <
QL

(Mm
L | E<)=+;, <

QL , s(M
m
L)�+;, <

QL , s[ |mQL
&m|�10�L2] (6.38)

Let Q%L=QL"�2sQL . Then, if L is large enough, we have

+;, <
QL , s[ |mQL

&m|�10�L2]�+;, <
QL , s[ |mQ%L

&m|�9s(L)�L] (6.39)

Thanks to Proposition 6.2 we obtain

RHS of (6.39)� max
W : Q%L/W/QL

++
W, s[ |mQ%L&m |�9s(L)�L]

+ max
W : Q%L/W/QL

+&
W, s[ |mQ%L&m |�9s(L)�L]

We can now use Proposition 6.8 plus spin-flip symmetry and the fact that
m # [0, m*), and we get

+;, <
QL , s[ |mQL

&m|�10�L2]�e&cL2�s(L)2
K

7. A LOCAL LARGE-DEVIATION RESULT

Here we prove Theorem 6.3 following [IS]. We start with a result on
the decay of the connectivity function for the d=2, q=2 FK random
cluster model, which improves the results in [CCS].

7.1. Decay of Connectivity for the FK Measures with Wired
Boundary Conditions

We consider here the FK ``random cluster'' model. We refer the reader
to [FK] (see also [Pi] where some useful properties are discussed).

Given G/EZ2 and an element | of the FK-configuration space
0FK=[0, 1]G, we say that an edge e # G is occupied (empty) for |, or
simply FK occupied (FK empty), if |(e)=1 (|(e)=0). We then denote by
+FK, ;, <

G (+F, K, ;, w
G ) the standard FK-measure on 0FK

G with parameters
p=1&exp(&2;), q=2 and with free (wired) boundary conditions (see,
e.g., [Pi] for more details). To simplify the notation, for any 4//Z2, we
will sometimes write +FK, ;, <

4 instead of +FK, ;, <
E4

and +FK, ;, w
4 instead of

+FK, ;, w
E� 4

. The following duality property of the FK model plays an impor-
tant role in the arguments of [IS]. Given | # 0FK

G , let |* # 0FK
G* be such

that

|*(e*)=1&|(e) \e # G
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Using the above mapping, any FK-measure on 0FK
G can be identified with

a FK-measure on 0FK
G* . In particular we have

+FK, ;, <
G (|)=+FK, ;*, w

G* (|*) and +FK, ;, w
G (|)=+FK, ;*, <

G* (|*) (7.1)

where the dual inverse temperature ;* is given by the Krammer�Wannier
equation

e2;=tanh ;*

Notice that ;*<;c as long as ;>;c . We will also use the following
monotonicity property of the FK measures: let U/V//Zd, and let f be
a nondecreasing function on 0FK

EU
. Then (see, for instance [Pi] for a proof )

+FK, <
U ( f )�+FK, <

V ( f )�+FK, w
V ( f )�+FK, w

U ( f ) (7.2)

For 4//Zd and x, y # 4 we define [x W
4 y] as the event that x is connected

to y by a path of bonds in E4 which are FK-occupied. What we want to
prove is the exponential decay of the connectivity function

{;, w
4 (x, y)=+FK, ;, w

4 [x W
4 y]

Notice that [x W
4 y] means that there is a connection which makes no use

of the ``boundary cluster'', otherwise the result would clearly be false. In
[CCS] it has been proven that the free b.c. connectivity function, being
equal to the two-point correlation function of the Ising model, has
exponential decay for all ;<;c . The wired case needs however a different
treatment (the FKG inequality says that { ;, w�{ ;, <). We also point out
that the following result has no ``obvious'' extension to the case d�3.

Theorem 7.1. For all ;<;c there exist C(;), m(;)>0 such that
for all L

{;, w
QL

(x, y)�c e&m |x& y| \x, y # QL

Proof. We can assume that L is greater than some L0(;). For l<L,
denote by Al (x) the event that the top side of the square Ql (x) is FK-con-
nected to the lower half of Ql , i.e., to the set [ y # Ql (x) : y2�x2+w 1

2 l x],
by a path of FK-occupied bonds entirely contained in EQl (x) . Let also A� l (x)
be the event that the Al (x) occurs modulo a rotation by k(?�2), k=0, 1, 2, 3,
i.e., that any side of Ql (x) is connected to the ``furthest'' half of the square.
Let n=w |x& y|�(2l )x. It is then easy to see that the event [x �w�

QL y] is

261Spectral Gap for Kawasaki Dynamics at Low Temperature



contained in the event An(l ) defined as follows: there exists j�n and a
sequence of disjoint squares [Ql (xi )] j

i=1 inside QL such that

(a) x # Ql (x1) and y # Ql (x j )

(b) 3<d(Ql (xi ), Ql (xi+1))�l \i=1 } } } j&1

(c) A� l (xi ) occurs for each i=1 } } } j.

Thus by an elementary Peierl's argument we get

{;, w
QL

(x, y)� :
�

j=n

(3l )2j +FK, ;, w
QL \,

j

i=1

A� l (xi )+ (7.3)

and, using (7.2)

+FK, ;, w
QL \,

j

i=1

A� l (xi )+�+FK, ;, w
�i Ql (x i ) \,

j

i=1

A� l (x i )+
= `

j

i=1

+FK, ;, w
Ql (xi ) (A� l(xi )) (7.4)

Thanks to Lemma 7.2 given below we can now choose l=l0(;) such that

(3l )2 +FK, ;, w
Ql (x i ) (A� l (xi ))�e&1 (7.5)

In this way we obtain

{;, w
QL

(x, y)� :
�

j=n

e& j�2e&n=2e&w |x& y|�(2l0)x K

Lemma 7.2. Let ;<;c Then, for any positive n

lim
l � �

l n+FK, ;, w
Ql

(A� l )=0

Proof. The proof is, in turn, based on the following lemma quite
similar to an analogous result proved in [MOS] for general finite range
two dimensional lattice spin systems.

Lemma 7.3. Let

Rl=[x=(x1 , x2) # Ql : x2�- l ]
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Consider the event Bl that there is a connection inside Rl between the top
side of Rl and the bottom half of Rl , defined as

[x=(x1 , x2) # Ql : x2�w- l �2x]

If ;<;c there exist positive constants = and l0 such that

+FK, ;, w
Rl

(Bl )�1&= \l�l0

We postpone the proof and complete instead the proof of Lemma 7.2.
Assume l�9 and denote by R i

l the vertical translate of Rl by the amount
w2i - l x , i=0, 1... . Notice that the rectangles R i&1

l and R i
l are separated

by a strip of width larger than 2. Then clearly the occurrence of the event
Al implies the occurrence of the event Bl for each rectangle R i

l with
i=0, 1,..., w 1

3 - l x. Thus, if we use Lemma 7.3, we get that

+FK, ;, w
Ql

(Al )�+FK, ;, w
Rl

(Bl )
(1�3) - l &1�(1&=) (1�3) - l &1

for any l�l0 7 9, where l0 and = are the constants given in Lemma 7.3.
Thus +FK, ;, w

Ql
(Al ) decays at least as a negative exponential of the square

root of the side l and the proposition follows at once from the trivial
inequality +FK, ;, w

Ql
(A� l )�4+FK, ;, w

Ql
(Al ). K

Proof of Lemma 7.3. Let M=[x # Rl : x2=w 1
2 - l x] be the hori-

zontal segment which splits Rl into roughly two equal parts and, for any
given positive integer $<l�2, let us divide M into a middle part Mmiddle and
a lateral part Mlat as follows

Mlat=M"Mmiddle

Mmiddle=[x # M : $�x1�l&$]

Accordingly we can write the event B as B=Blat _ Bmiddle where Blat is the
event that the lateral part of M, Mlat , is FK-connected to the top side of
Rl and similarity for the event Bmiddle . Then, thanks to the FKG inequality,
we get

+FK, ;, w
Rl

(B)=1&+FK, ;, w
Rl

(Bc
lat & Bc

middle)

�1&+FK, ;, w
Rl

(Bc
lat) +FK, ;, w

Rl
(Bc

middle) (7.6)

We now find lower bounds for both factors in the RHS of (7.6). The term
+FK, ;, w

Rl
(Bc

lat) is clearly bounded from below by the probability that all
vertical bonds with one vertex on Mlat are not FK-occupied, that is

+FK, ;, w
Rl

(Bc
lat)�e&C(;) $
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for a suitable constant C(;). Using the exponential decay of connectivity
for any ;<;c proved in [CCS], the term +FK, ;, w

Rl
(Bc

middle), is bounded from
below by

+FK, ;, w
Rl

(Bc
middle)

�1& :
x # Mmiddle

+FK, ;, w
Rl

(x is FK-connected to the boundary of Rl )

�1&C1(;) :
x # Mmiddle

e&m(;) d(x, R c
l )� 1

2 (7.7)

provided that both $ and l are taken large enough depending on ;. In con-
clusion the RHS of (7.6) is larger than 1& 1

2 e&C(;) $ for any l and $ large
enough. The proof of the lemma, and thus of Theorem 7.1, is complete. K

7.2. Proof of Theorem 6.3.

For ;>;c , let m0(;)=m*(;)(1&2v0), where v0 is defined in (5.4). In
Proposition 2.3 of [CGMS] (and in the following remark) it was already
proved that, under the same assumptions of Theorem 6.3 we have (remember
that Nm

L =w(1+m) |QL |�2x),

lim
L � �

&
1
L

log +;, <
QL

[NQL
=Nm

L ]�.(m)

with equality if m�m0 . Thus we only have to consider the case m #
(m0 , m*) and we must prove a lower bound of the form

+;, <
QL

[NQL
=Nm

L ]�e&L[.(m)+$(L)] (7.8)

with limL � � $(L)=0. For this purpose we choose some m # (m0 , m*)
once and for all, and we establish some useful notation. We set Q� L=
[x # R2 : d�(x, QL)�1�2]=[0, L]2&(1�2, 1�2) and we define D lb

L as the
set of all rectifiable curves # # Q� L such that # is open with one endpoint on
the left side of Q� L and the other one on the bottom side of Q� L . Let B lb

L be
the set of all subsets * of EQL

such that * connects the left side of QL with
its bottom side. Similarly, let B* , lb

L be the set of all subsets * of E� QL
such

that * connects the left side of Q� L with its bottom side. Since m # (m0 , m*),
the set 1w defined in (5.5) consists of 4 curves and each of them is a quarter
of Wulff shape centered at one of the four corners of Q. One of these curves
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suitably rescaled belongs to D lb
L and we denote it by #w

L . We then let
wL=L1�4

- log L and define the sets

T� L=[x # Q� L : d(x, #w
L)�wL �2]

(7.9)
TL=[x # Q� L : d(x, #w

L)�wL]

The difference TL"T� L consists of two disjoint ``corridors'', which we denote
by T i

L (the ``internal'' one, i.e., closer to the origin) and T e
L (the ``external''

one). With this notation we then define the key event E k
L as the set of

all _ # 0QL
such that

(E1) G<
QL

(_) (remember (6.5)) contains exactly one open contour #
such that # # B* , lb

L , #/TL and |#|�kL log L
(E2) and all the other contours have length smaller than k log L.

Then, following [IS], we write

+;, <
QL

[NQL
=Nm

L ]�+;, <
QL

(E k
L) +;, <

QL
(NQL

=Nm
L | E k

L) (7.10)

and we estimate separately the two factors in the RHS of (7.10).

Proposition 7.4. Let ;>;c . Then we can choose the constant k in
such a way that there exists a positive constant c(;) such that, for any L
large enough

+;, <
QL

(E k
L)�e&L.(m)&c(;) - L log L

Proof. The proof follows word by word the proof of the analogous
statement discussed in Section 3.4 of [IS], with some modifications due to
the fact that our geometry and our boundary conditions are different from
theirs. However, in our context, only two key points of the proof of [IS]
have to be reproved, namely Lemma 7.5 and Lemma 7.6 which appear
below. Once these results are available, the rest of the proof is an almost
literally transposition to our case of their arguments and, in order to avoid
useless repetitions, it will be skipped.

The strategy envisaged in [IS] to prove Proposition 7.4 can be
explained in simple terms:

(1) One first shows (see Lemma 7.5 below) that with probability
larger than e&L.(m)&c(;) - L log L there exists * # B* , lb

L such that */T� L and
** is FK-empty.

(2) Then one proves that with large probability there exist two FK-
clusters *i , *e # B lb

L , such that * i # T i
L and *e # T e

L .
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When both events in (1) and (2) happen then *i and *e belong to different
FK-clusters and therefore the associated Ising spins will have opposite sign
with probability 1�2. Thus, conditioned to the existence of a set * as in (1),
with large probability there will be a Peierls contour by # # B* , lb

L with
#/TL . We are now ready to state our first result. Let CL be the event

CL=[_* # B* , lb
L such that */T� L and ** is FK-empty] (7.11)

Then we have (see Lemma 3.3.1 in [IS] for an analogous statement in the
case of plus boundary conditions).

Lemma 7.5. Let ;>;c . Then there exists a positive constant c(;)
such that, for any L large enough

+FK, ;, <
QL

(CL)�e&L.(m)&c(;) - L log L

Proof. On the lattice Z2 define the three mappings �vert , �hor and
�diag to be the reflections around the lines in R2 given by x=&1

2 , y=&1
2

and y=&x&1 respectively. For simplicity we denote with the same sym-
bol the induced mappings on the configuration space 0FK=[0, 1]EZ 2 given
by �vert(|)([x, y])=|([�vert(x), �vert( y)]) and similarity for the others.

Let now Q*
L #�*(QL) where *=vert, hor, diag, let 4=QL _

Qvert
L _ Qhor

L _ Qdiag
L and let G=EQL

_ EQL
vert _ EQL

hor _ EQL
diag . Notice that G

contains all bonds in E4 minus those connecting different Q*
L 's. So, if A is

a negative event in [0, 1]EQL , thanks to the monotonicity property (7.2)
and the symmetry of the FK-measures w.r.t. rotations of multiples of ?�2,
we have

+FK, ;, <
QL

(A)=+FK, ;, <
G (A & �vert(A) & �hor(A) & �diag(A))1�4

�+FK, ;, <
4 (A & �vert(A) & �hor(A) & �diag(A))1�4

�+FK, ;, w
4 (A & �vert(A) & �hor(A) & �diag(A))1�4 (7.12)

We now apply the above result in order to get a lower bound on
+FK, ;, <

QL
(CL). Remember that the unique Wulff curve #w

L # D lb
L is a quarter

of the Wulff curve #̂w
L in 4, centered at the point (&1

2 , &1
2) and enclosing

an area equal to 2L2(m*&m)�m*. Therefore, letting

T� 4=[x # 4 : d(x, #̂w
L)�wL �2] (7.13)

we have that the event C4=[_ a loop * of dual bonds, inside T� 4 around
the origin, such that ** is FK-empty] (7.13) is clearly contained in the
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event CL & �vert(CL) & �hor(CL) & �diag(CL). Thus, thanks to (7.12) and using
Lemma 3.3.1 of [IS], we get

+FK, ;, <
QL

(CL)�+FK, ;, w
4 (C4)1�4�e&L.(m)&c(;) - L log L (7.14)

for a suitable constant c(;) and any L large enough. K

The second estimate that we need is a bound on the dual FK connec-
tivity function and it is a key ingredient to carry out the second step of the
argument of [IS] (see the estimate above formula 3.4.5 there). Consider
the events

F v
L =[_* # B lb

L such that */T v
L and * is FK-occupied] v # [i, e]

Then we have the following result:

Lemma 7.6. Let ;>;c . Then

lim
L � �

+FK, ;, <
QL

(F i
L)=1 and lim

L � �
+FK, ;, <

QL
(F e

L)=1

Proof. We consider the event T i
L , since the proof for T e

L is identical.
Let Q*L&1=QL&1+(1�2, 1�2) in such a way that (EQL

)*=EQ*L&1
. Thanks to

the duality relationships (7.1), it is enough to prove that

lim
L � �

+FK, ;*, w
Q*L&1

(((F i
L)c)*)=0

where the event ((F i
L)c)* is the dual of the complement of F i

L , and it
obviously implies the occurrence of the event DL given by

DL={ there exists x, y # Q*L&1 such that d(x, y)�L1�4

and there is an FK-connection between x and y=
Thanks to Theorem 7.1 we get

+FK, ;*, w
Q*L&1

(DL)�L2Ce&mL 1�4

which goes to zero as L � �. K

We are left with the problem of proving a lower bound on the last
factor in the RHS of (7.10), +;, <

QL
[NQL

=Nm
L | E k

L], which does not spoil
the good lower bound we already have on +;, <

QL
(E k

L). As in [IS] we have
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Proposition 7.7. Let ;>;c and k be fixed. Then there exists a
constant c(;, k) such that

+;, <
QL

(NQL
=Nm

L | E k
L)�e&c(;, k) - L (log L)2

for any L large enough.

Proof. Define a new scale for large contours as s(L)=k log L. For
any contour # # B* , lb

L such that #/TL , we set 4=A# _ B# as explained in
Section 6.1 and define the sets A%# , B%# as in (6.7). We can write the event
E# (remember (6.8)) as the disjoint union E#=E +

# _ E &
# , where the super-

script + means that _(x)=+1 for all x # 2s
# & B# and _(x)=&1 for all

x # 2s
# & A# , and viceversa for E &

# . Thus we have

+;, <
QL

(NQL
=Nm

L | E k
L)� inf

# # BL*
, lb

#/TL

+;, <
QL

(NQL
=Nm

L | E#)

= 1
2 inf

# # BL*
, lb

#/TL

+;, <
QL

(NQL
=Nm

L | E +
# )

By property (E1) in the definition of E k
L we know that |#|�kL log L.

Therefore

|2s
# |�3kL log L (7.15)

Furthermore, since #/TL and since A%#w
L
=L2(1&m�m*)�2 and B%# w

L
=

L2(1+m�m*)�2, we have that, for constant C1 ,

| |A%# |&L2(1&m�m*)�2|�C1LwL
(7.16)

| |B%# |&L2(1+m�m*)�2|�C1LwL

Let, for any finite volume V, Nm
V=w(1+m) |V |�2x, so that Nm

L =Nm
QL

.
By (7.16) and (7.15) one easily sees that, if we define �(#) by

Nm
L =N&m*

A%#
+N+m*

B%#
+�a

#

then we have |�a
# |�3C1 LwL . Moreover, we can write

NQL
=NA%#

+NB%#
+�b

#

where �b
#=N2s

#
is a number which does not depend on the specific

configuration _ # E +
# and satisfies �b

#�|2 s
# |�C1 LwL . Therefore, by an

obvious variation on Proposition 6.1, we get
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+;, <
QL

(NQL
=Nm

L | E +
# )

=+;, <
QL

(NA%#
+NB%#

=N&m*
A%#

+N+m*
B%#

+�a
#&�b

# | E +
# )

�+;, <&, QL
A%# , s (NA%#

=N&m*
A%#

+�a
#) +;, <+, QL

B%# , s (NB%#
=N+m*

B%#
&�b

#) (7.17)

We now have to find appropriate lower bounds on both factors of the RHS
of (7.17). Since the treatment is identical (modulo spin-flip), we consider
only the second factor. Let B#%%=B#%"�2sB%# . The b.c. <+, QL is of type
(s, +), so we proceed as in the proof of Lemma 6.2 and show that to
(almost) every a we can associate a Z-path C(_) which is the most exter-
nal Z-path of +1 spins surrounding B#%%. It is also clear that this path,
being the ``most external'', can be written as a disjoint union

C(_)=C1(_) _ C2(_) (7.18)

where C1(_)/2 s
# and C2(_)/�2s QL . Therefore

|C(_)|=|C1(_)|+|C2(_)|�|2s
g |+|�2sQL |

�3kL log L+8kL log L=11kL log L (7.19)

We can also define the sets X i (_) which is the set of all sites x surrounded
by C(_) and X e(_)=B%#"X i (_). Then, again we have X e(_)/2s

# _ �2s QL ,
so

|X e(_)|�11kL log L, |�X e(_)|�11kL log L, |�X i (_)|�11kL log L

The idea is then to condition on what happens ``outside'' C(_), and to use
the DLR property. In this way we get

+;, <+, QL
B%# , s (NB%#

=Nm*
B%#

&�b
#)

�inf
X e

inf
_X e

+;, <+, QL
B%# , s (NB%#

=Nm*
B%#

&�b
# | X e(_)=X e, _X e)

=inf
X e

inf
_X e

+;, <+, QL
B%# , s (NX i=Nm*

B%#
&�b

# &NX e | X e(_)=X e, _X e)

�inf
X e

inf
_X e

+;, +
X i, s(NX i=Nm*

B%#
&�b

#&NX e(_))

� inf
X/QL : X#B#%%
|�X | �11kL log L

inf
|n|�2C1 Lwl

+;, +
X, s (NX=Nm*

B%#
+n)

� inf
X/QL : |X |�C2L2

|�X | �11kL log L

inf
|n|�2C1 L5�4 log L

+;, +
X, s (NX=Nm*

B%#
+n)
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At this point we can use inequalities (1.1.1) and Lemma 2.3.3 in [IS], and
the proposition is proven. K
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